

MOTORIZED INDIVIDUAL MOBILITY IN COMMUTING TRIPS: MODAL PREFERENCE OR CONSTRAINED MODE CHOICE? A MACHINE LEARNING APPROACH

Rémy LE BOENNEC, VEDECOM Institute, Versailles, FRANCE

Fouad HADJ SELEM, VEDECOM Institute Ghazaleh KHODABANDELOU, University of Paris-Est Créteil Val de Marne

OUTLINE OF THE PRESENTATION

- 1. Motivations
- 2. Research assumptions
- 3. Related literature
- 4. Data
- 5. Method
- **6. Perspectives**

1. MOTIVATIONS

- The **Ile-de-France region** in France is specific regarding **mobility behaviours**: the modal share of private car in commuting trips is 42% (Source: French National Transport Survey 2008)
- The French region is the most endowed in public transit (PT) with the perspective of the **Grand Paris Express** to optimize trips from suburb to suburb within 5 years (regional railway network)
- Low-density areas in the edge of the region could not see credible alternatives to private vehicle (PV)

- Where public transit is available, private vehicle =
 - A **constrained** mode choice (if PT=no competitive alternative)
 - Or a modal preference (<> psycho- or sociological factors)
- A transport policy issue:
 - If modal preference for PT > the Grand Paris Express should be relevant
 - If modal preference for PV > incentives towards ridesharing

2. RESEARCH ASSUMPTIONS

RESEARCH ASSUMPTIONS (1/2)

- **The idea** = to compare travel times:
 - Using public transit (PT) or private car (PV)
 - Between living and working places in the Ile-de-France region
- The research assumption:
 - Comparable travel times to commute choosing PT or PV should be associated with comparable modal shares for both transport modes from origin to destination
 - AND a higher travel time using one of the transport modes should be associated with a higher modal share for the other transport mode

- A regional science issue: within the region, specific mobility behaviours should be revealed in:
 - (1) Paris
 - (2) the suburban areas and
 - (3) the periurban areas (given heterogenous human density levels)
- An academic stake (Barthelemy 2016): to assist urban economics practitioners' for the calibration of households' utility function

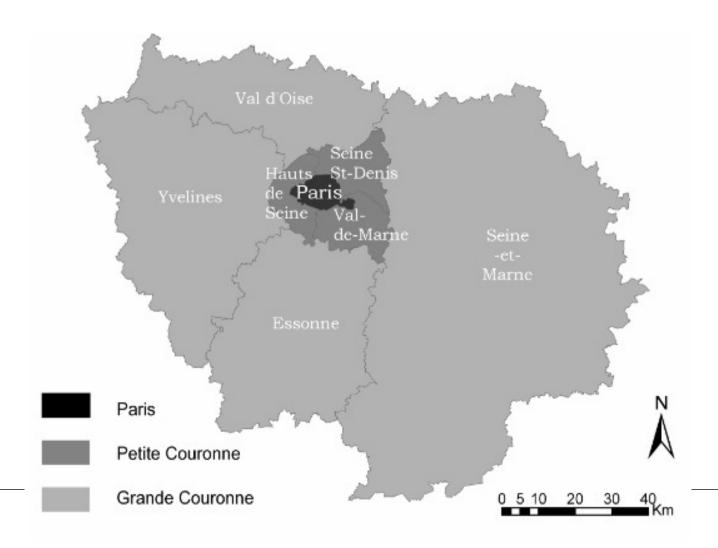
3. RELATED LITERATURE

- **Abundant literature** addressing mode choice (1/2):
 - The **mode** itself (from private vehicle to others): *public transit* (Kamruzzaman et al 2015, Shaaban and Kim 2016, Shen et al 2016), *active modes* (Lee et al 2015, Braun et al 2016, Cooper 2017, Ton et al 2018), *ride-and carsharing* (de Luca and Di Pace 2015, Lalou and Winter 2017, Bulteau et al 2019)
 - The **trip purpose**: commuting (Cao 2015, Heinen 2016, Franco 2017, Ko et al 2019), accompanying children (He and Giuiliano 2017, Liu et al 2018, Ferenchak et al 2019)
 - Socioeconomic features of the mobility users: gender (Abasahl et al 2018), age (Kamargianni et al 2015, adolescents), employment status (students: Shaaban and Kim 2016, Zhou 2016, Haggar et al 2019)
 - Attitudes as psycho-sociological factors: Lind et al 2015, Pike and Lubell 2016, Munoz et al 2016, Klinger 2017, Lanzini and Kahn 2017, Prato et al 2017, Vinayak et al 2018
 - Mobility habits (Klinger 2017, Bouscasse et al 2018) and activities conducted during the trip (Malokin et al 2015, Malokin et al 2019)

- Abundant literature addressing mode choice (2/2):
 - Weather conditions: Liu et al 2015, Anta et al 2016, Manoj and Verma 2016
 - Land-use interactions and location choice issues: Manoj and Verma 2016, Boulange et al 2017, Sun et al 2017, Helbich 2017, Bhat et al 2017, Ding et al 2018
- A recurrent limitation: available data is old (last national household travel survey in 2008 in France) and scattered (sociodemographic data, road counting data, GPS tracking...)
- > A room for innovative methods to estimate human mobility flows

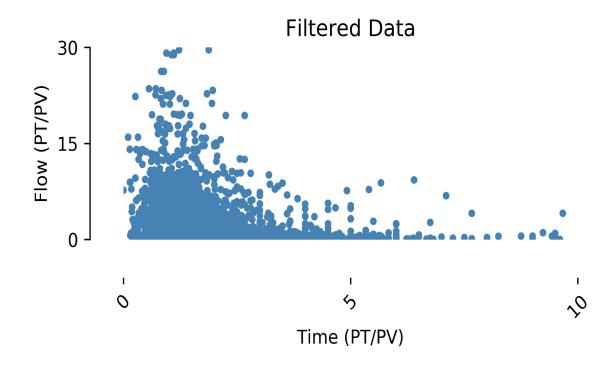
4. DATA

- **Entropy** = a machine-learning tool that uses multisource data to merge it and estimate:
 - Mobility flows
 - Associated transport modes
 - Associated trip purposes
- The input data come from:
 - Points of interest (POI)
 - GPS tracking for public transit (PT) and private vehicles (PV)
 - Ticketing (PT)
 - Road radars
 - Survey data (origin-destination surveys, Household Travel Surveys (HTS), road data couting)
 - Sociodemographic data from the National Institute for Statistics and Economic Studies (INSEE)
- > Mobility flows are estimated for origin-destination couples in the Ile-de-France region


- **Home-to-work** is the only trip purpose considered (30% of the total trip purposes (Source: French National Transport Survey 2008)
- Travel time data comes from:
 - Either theoretical data > Considers a speed limit of the vehicles in every road section (PV), without slow-down or congestion
 - Either (declared) **survey data (HTS)** > Realistic travel times, acurate distances (does not consider the centroid of the municipality like in the previous method)

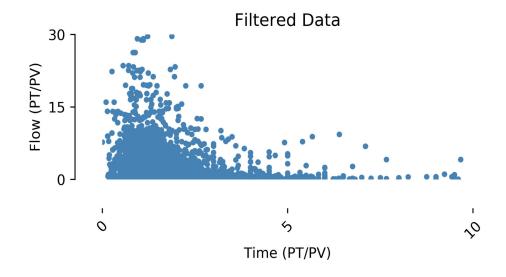
DATA (3/3)

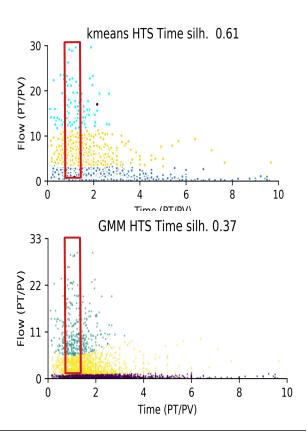
The Ile-de-France region: (1) Paris inner city (« Paris »), (2) Close suburbs (« Petite couronne ») and (3) The rest of the metropolitan area (« Grande couronne »)(Source : Halbert 2008)


5. METHOD

METHOD (1/4)

• **Research strategy=clustering:** to compare clusters of origin-destination couples obtained by the *K-means* method and a *Gaussian Mixture Model* (GMM)

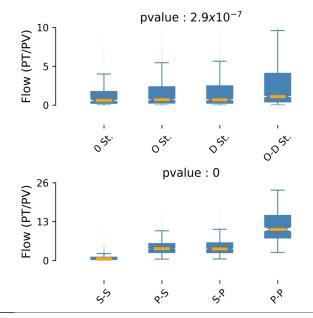




METHOD (2/4)

Both methods are applied to estimate associated **mobility flows.** Coming back to our research assumption we search to reveal, in a **time band** for travel time ratios around 1:

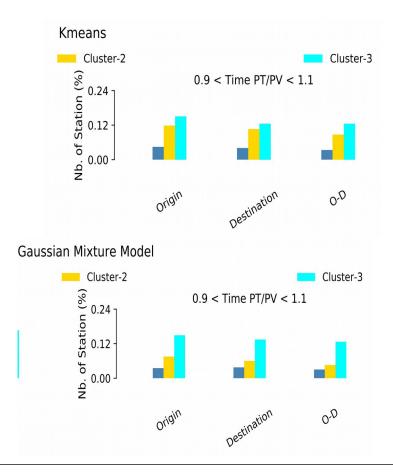
- Either a « modal indifference » (if Time_{PT} # Time_{PV} and Flow_{PV})
- Either a modal preference for PV (if Time_{PT} # Time_{PV} but Flow_{PT} << Flow_{PV})
- Either a modal preference for PT (if Time_{PT} # Time_{PV} but Flow_{PT} >> Flow_{PV})



METHOD (3/4)

- Need to add covariates in our dataset to better qualify the relationship between time ratios and relative flows (based on mode choice literature)
- Analysis of Variance (ANOVA) applied to the first two covariates :
 - Presence of a railway station in the municipality
 - Type of area (Paris/ Metropolitan area)

	Median	Mean	Std. Deviation
0 Station	0.60	1.84	2.94
O Station	0.69	2.23	3.86
D Station	0.68	2.25	3.90
OD Station	1.1	2.97	4.01


	Median	Mean	Std. Deviation
SubsSubs.	0.57	0.86	0.95
Paris-Subs.	3.94	4.64	2.97
SubsParis	3.89	4.68	2.99
Paris-Paris	10.41	11.98	6.01

METHOD (4/4)

To describe Cluster i, i=1,2,3, we consider the relationship between the number of railway stations and the relative flows (if comparable travel times using PT or PV)

6. PERSPECTIVES

- **Work in progress**: incorporate additional covariates to better qualify the modal preference for one or the other transport mode in a linear regression model, using:
 - Geographical data: presence of a car-park in the station in origin/ in destination/ both;
 Number of parking spaces
 - **Sociodemographic data**: age, gender, motorization rate, occupation (*R-squared>0.4*)
- > Associate specific values of the covariates to Cluster i, i=1,2,3 > What values associated to modal preference for PV or for PT?

PERSPECTIVES (2/2)

- Better use our typology of areas > finer results within the Ile-de-France region, distinguishing between:
 - The inner city of Paris
 - Close suburbs
 - The rest of the Metropolitan area
- An original approach, merging and estimating complete data from incomplete multisource data
 - > The method could be replicated to areas where the modal share of PT is lower than in the Ile-de-France region (if available) to identify specific brakes and incentives for modal shift (French metropolises)

Thank you!

Together to accelerate the mobilities of tomorrow

remy.leboennec@vedecom.fr

